Amazon Hardware

Hardware

We’re often asked what hardware works well with Kismet; here’s a list of some useful starting points with links to Amazon. These links help the Kismet project a little if you use them to order, but by all means order from where ever works best for you!

Books

The Scientist & Engineers Guide to Digital Signal Processing

Interested in learning how the SDR capture code works? The Scientist and Engineers Guide to Digital Signal Processing is a very approachable introduction and reference.

Wi-Fi cards

Mediatek MT792x USB

The newest Mediatek chipset supports tri-band operation, with 6GHz channels. You absolutely need a modern Linux (Kernel 5.18 or newer), and need to set the proper regulatory domain (iw reg set US for those in the US) to enable 6GHz channels.

There are several manufacturers of this card, the easiest to get directly is by Alfa:

Other manufacturers also make devices using this chipset, but typically without removable antennas, and sometimes it can be difficult to find reliable users of the chipset.

Mediatek MT7612U

This is a relatively new 802.11AC chipset which has increasingly good Linux support built into the kernel. You need Linux 4.19.7 or later, and Linux 5.0 preferred for this to work. This chipset works very well on Intel and Raspberry Pi 4, and can work on a Raspberry Pi 3 with an up-to-date kernel and proper module flags (echo "options mt76_usb disable_usb_sg=1" > /etc/modprobe.d/mt76_usb.conf)

There are several flavors of this card, including:

Intel

For mPCI-e or M2, Intel is currently making the most reliable cards - the 802.11AC and 802.11AX devices are well supported in modern Linux, however the WiFi-7 chipsets appear to be less supported currently.

  • Intel AX200 WiFi-6 / Dual band
  • Intel AX210 WiFi-6e / Tri band. Getting the Intel to expose the 6GHz channels can require doing an explicit iw dev [foo] scan first.

GPS

An important factor to keep in mind is that USB GPS devices are traditional GPS: They have GPS receivers only. In contrast to “GPS” implementations on cell phones, they require a much strong signal and typically will not work indoors, because the smartphone GPS system uses a combination of Wi-Fi, Bluetooth, and cellular data to provide a synthetic location. Pure GPS usually needs an open view of the sky and may take several minutes to get the initial lock.

Some GPS devices we’ve had luck with include:

  • The Transsystem GPS/Glonass/Galileo/BeiDou device is unfortunately pricey, but has been one of the better performing receivers available.
  • The VK-112 is an extremely cheap option, but lacks a repositionable antenna.
  • The Stratux uBlox is another reasonably cheap option with a stronger antenna.
  • The Neo-7M uBlox device coupled with an active antenna may be an acceptable option for some situations where portability isn’t as great a concern.

Other Radios and SDR

RTLSDR

Most of the SDR capture sources in Kismet use the RTLSDR radios - they’re cheap, low power, and easy to get running. Like Wi-Fi, a SDR radio can only tune to one range of frequencies at a time: Often it makes sense to get multiple radios, one for each SDR-based protocol you want to monitor.

  • The RTLSDR Kit with the radio, several antennas, and mounts, is a good place to start.
  • The stand-alone RTLSDR-blog radio comes with BIAS-T power injection (for running external amps and filters).
  • The nooelec version of the RTLSDR is low profile for fitting multiple radios into adjacent USB ports. The basic model lacks bias-t power injection, however.
  • The nooelec smartee has continual bias-t power injection and a similar physical profile allowing multiple radios to be used on adjacent ports.

CC2540 BTLE

The CC2540 BTLE card is a super cheap BTLE capture card (for advertisements only). While it lacks an external antenna jack, it can be modified, and the cost makes up for a lot.

CC2531 Zigbee

Similar to the CC2540, the CC2531 is an ultra cheap zigbee/802.15.4 capture card. It lacks an external antenna and is 2.4GHz only, but the cost makes up for it.

1090/ADSB

Coupled with a RTL-SDR, antennas specific for ADSB can help increase your range for plane spotting using the new Kismet ADSB capture source. Remember though - you’re unlikely to get more range than your line of sight, so often it’s easier to see more distant planes at a higher altitude. Some good tools include:

  • The FlightAware 1090MHz antenna from the FlightAware team.
  • An N to SMA cable is needed to connect the antenna to the RTL-SDR. Notice you need a standard SMA cable not a RP-SMA for most SDRs! Generally you want to keep this as short as possible.
  • Optionally, a 1090MHz Filter/Amplifier. If you have a busy RF environment, are near a large FM broadcast antenna, or are otherwise getting weak signals, a combination filter and amplifier can dramatically increase your coverage. You’ll need a bias-tee capable sdr to power the amplifier!

Servers / SBCs

Most people will run Kismet on a laptop; if you’re looking for some embedded solutions, however, it runs better on some hardware than others:

Zimaboard

While not the most powerful device, the Zima series of SBCs offer a stable platform. Being based on Intel processors seems to alleviate some of the difficulties with some devices and drivers, they support SATA attached disks, and can be expanded to use PCI-based capture cards.

Raspberry Pi 5

Bigger number, better board? Raspberry Pi 5 is always an option.

Raspberry Pi 4

The Raspberry Pi 4 is a significant upgrade from the model 3; the model with 4 gig of RAM is quite competent for running Kismet in many moderate to busy environments, and a must for running the Mediatek 802.11AC USB cards.